Evergreen Corridor Management Strategy

The purpose of the Evergreen Corridor Management Plan (CMP) is to provide guidance, direction and documentation for future decisions and actions along SE Evergreen Highway.

- Roadway surface and maintenance
- Roadway Standards
- Stormwater Requirements
- Pathway Design
- Historic and Scenic Significance
- Local and Regional Access
- Traffic Volumes and Speeds
- Street Lighting and Utilities
Americans with Disabilities Act (ADA): Individuals requiring reasonable accommodation for information above may request written materials in alternate formats, sign language interpreters, physical accessibility accommodations, or other reasonable accommodation. Contact the project manager, Jennifer Campos at 360-487-7728 (TTY: 360-487-8602) between 8:00 a.m. and 5:00 p.m.

Title VI Statement to Public: The City of Vancouver ensures full compliance with Title VI of the Civil Rights Act of 1964 by prohibiting discrimination against any person on the basis of race, color, national origin, or sex in the provision of benefits and services resulting from its federally assisted programs and activities. For questions regarding the City’s Title VI Program, contact Chris Malone, Senior Civil Engineer, at 360-487-7130.

Estimado vecino: Este informe contiene información adicional sobre el proyecto. Pídale a alguna persona que se lo traduzca o llame a City of Vancouver Construction Services (Servicios de Construcción de la Ciudad de Vancouver) 360-487-7750 De 7:30 a.m. a 4:30 p.m., de lunes a viernes obtener ayuda.

Уважаемые соседи! В данном отчете содержится дополнительная информация о проекте. Попросите кого-нибудь перевести ее для вас или обратитесь за помощью в Отдел строительства администрации г. Ванкувера (City of Vancouver Construction Services) по телефону 360-487-7750 с 7:30 до 16:30 с понедельника по пятницу.
Table of Contents

1 **Introduction**

- Purpose .. 1
- Background .. 2
- The Corridor Today ... 5
- The Need for Improvements .. 6
- Strategy Approach .. 7

2 **Public and Stakeholder Involvement**

- Overview .. 9
- Neighborhood Association Meetings ... 9
- Community Survey ... 10
- Small Group Meetings .. 10
- Open Houses .. 11

3 **Overview of Corridor Management Objectives**

- Development of Objectives ... 13
- Key Messages from the Public Outreach Process .. 13
- Roadway Conditions ... 15
- Roadway Surface Treatment Options and Costs .. 16
- Corridor Traffic Analysis ... 17
- Traffic Safety Assessment ... 20
- Primary Objectives for the Evergreen Corridor ... 22

4 **Provide a Well-Maintained Roadway Surface**

- Strategy 1.1 Asphalt Milling .. 24
- Strategy 1.2 Short-Term Repairs ... 24
- Strategy 1.3 Asphalt Overlay Pilot Project ... 24
- Strategy 1.4 Restriping and Reflectors .. 26
- Strategy 1.5 Culvert Condition Assessment .. 26
- Strategy 1.6 Pavement Rehabilitation Plan .. 26

5 **Build a Continuous, Context-Sensitive Pedestrian Pathway**

- Strategy 2.1 Pursue Funding Opportunities .. 28
- Strategy 2.2 Minimum Pathway Width .. 28
- Strategy 2.3 Public Input Opportunities ... 28
Vancouver City Council
Tim Leavitt, Mayor
Jack Burkman
Bart Hansen
Bill Turlay
Ann McEnerny-Ogle
Alishia Topper
Ty Stober

Community Groups
Old Evergreen Highway Neighborhood Association
Columbia River Neighborhood Association
Riverview Neighborhood Association
Evergreen Trail Coalition

Project Team
OTAK, INC
Mandi Roberts
Tim Kraft
Ryan Billen
Lindsay Martin
DKS ASSOCIATES
Ray Delahanty
CITY OF VANCOUVER
Sandra Towne
Jennifer Campos
Rebecca Kennedy
Jamin Kimmel
Brian Carlson
Bill Whitcomb
Dan Swenson
Ryan Miles
Chris Sneider
Introduction

Purpose
The Evergreen Corridor Management Strategy provides guidance, direction, and documentation for future decisions and actions related to corridor improvements, operations, and maintenance for the purpose of improving safety and enhancing conditions for all residents whether they are walking, riding their bike, or driving. This strategy considers past planning efforts including neighborhood action plans, City and regional plans (refer to the Appendix: Existing Conditions Report), as well as efforts by the Friends of Evergreen Highway and the Evergreen Trail Coalition.

The strategy also reflects the changes in land use along the corridor due to increasing residential densities and that SE Evergreen Highway provides the only access to much of this growing residential area. Policy guidance provided for the development of the strategy comes from the City of Vancouver Comprehensive Plan with a focus of designing, operating and maintaining the corridor to achieve safety and accessibility for all residents.

THIS CHAPTER ADDRESSES:
- Purpose
- Background
- The Corridor Today
- The Need for Improvements
- Strategy Approach
Background

When SE Evergreen Highway, or North Bank Highway as it was originally known, was built in 1920, Clark County was very different than it is today. The original vision for SE Evergreen Highway saw it reaching all the way to Yakima County to become a major east-west highway across Washington. The corridor was the first paved roadway in Clark County and was built to the standards at the time with concrete panels and no shoulders.

The corridor was part of the State’s highway system until 1954 when it was gifted to Clark County when State Route (SR)-14 was built. When this change occurred, the nature of the highway changed along with the needs of users along the road. As the area has become more urbanized and residential densities along the roadway have increased, the need for roadway improvements has become more apparent.

Figure 1 shows key dates and events in the history of the corridor. Figure 2 depicts the context of the Evergreen Corridor within the City of Vancouver. For more information about the background of the corridor, as well as land uses, natural resources, and other conditions refer to the Evergreen Corridor Existing Conditions Report.

FIGURE 1: Corridor Background

1920: Original concrete roadway built
1954: Roadway transferred to Clark County
1978: Designated as a scenic route
1990: Friends of Evergreen Highway formed
1994: Clark County adopts trail plan
1997: City annexes roadway
2011: EOEHNA and OEHNA adopt NAPs
2015: Evergreen CMP project begins
FIGURE 2: Corridor Context
The Corridor Today

The Evergreen Corridor is almost exclusively a low-density residential area with the exception of the Columbia Vista Corporation and the access it provides to large commercial/mixed use areas on SE 164th Avenue. While a benefit for the residents of the area, easy access to SE 164th Avenue and SR-14 has created safety issues from out of area cut-through traffic, particularly during the morning commute window. High speed limits and little to no stops make the corridor an attractive alternative to the increasing congestion on SR-14.

SE Evergreen Highway is classified as a collector arterial roadway and extends seven miles from where it begins west of SE State Street to the Vancouver city limits near SE 192nd Avenue.

The roadway consists of two ten-foot travel lanes with some shoulder areas that are a combination of property owner improved driveways/parking spaces and in many areas no-shoulders exist. A pedestrian pathway has been built on one side of the roadway from SE 100th Court to Columbia Springs, starting on the south side and then alternating to the north side at SE 113th Court.

The speed limit on the highway is posted 35 MPH from SE Chelsea Avenue to SE Ellsworth Road, and 40 MPH from SE Ellsworth Road to the Vancouver city limits. The surface water drainage is primarily conveyed in an open ditch system. The corridor has very few street lights, most of which have been installed when parcels along the corridor develop.
The Need for Improvements

When the City annexed SE Evergreen Highway in 1997, the roadway was already in a deteriorating condition, and funds were not available to fully reconstruct the roadway. The City put down an asphalt overlay in many areas of the corridor to address the road surface condition. With increasing vehicle traffic over time, the asphalt overlay became uneven and rough to drive on. One of the top priorities for residents is to see the roadway improved to create a smoother riding surface and ensure maintenance is provided on a reasonable cycle.

The community has also expressed a strong interest in continuing the construction of the pedestrian pathway for the entire extent of the corridor. People walking or riding their bike along the corridor are forced to either use the roadway or shoulder areas if accessible. High driver speeds, narrow roadway, and lack of facilities prevent residents from safely traveling along the corridor.
Strategy Approach

The approach to developing the Evergreen Corridor Management Strategy included compiling information on existing conditions; reviewing past planning efforts and processes; completing a traffic study analysis; and actively engaging corridor residents through a survey, small group meetings, open houses, and neighborhood association meetings. Figure 3 below highlights key inputs that supported development of the strategy.

Elements reviewed and addressed in the analysis and planning process included:
- Roadway surface and maintenance
- Traffic volumes and speeds
- Roadway standards
- Stormwater requirements
- Pathway design
- Historic and scenic significance
- Street lighting and utilities

Recommendations for improvements are addressed in this strategy (see Chapters 4 through 8). A separate Existing Conditions Report provides background information, including descriptions of historic and scenic significance (see Appendix).

FIGURE 3: Processes and Inputs
Overview

The development of this strategy included an in-depth public outreach process to help inform the final recommendations. It included different levels of outreach to try and reach as many residents on the corridor as possible. Opportunities for input included neighborhood association meetings, small group meetings, a community survey, and open houses. In addition to the survey and public meetings, the City provided information on the strategy through a project e-mail list and web site, as well as one on one conversations with residents via phone, e-mail, or in person.

Neighborhood Association Meetings

Staff were invited to present at the annual Old Evergreen Highway Neighborhood Association and Columbia River (formerly East Old Evergreen Highway) Neighborhood Association meetings to discuss the corridor management strategy. For each meeting over 60 residents attended, providing a good opportunity to quickly answer residents’ questions and receive direct project feedback.
Community Survey

During November and December of 2015 residents were invited to complete an online community survey. A link to the survey was sent via postcard to the over 1,700 properties located within the project area and through the project e-mail listserv. The survey included 18 questions focused on preferences and priorities for improvements to the corridor. Approximately 320 residents completed the survey, many of whom took the time to provide specific comments and feedback to the individual questions.

Small Group Meetings

In January 2016 the project team facilitated a total of eight meetings, each with around 6-12 participants. The small group meetings, many of which were hosted at the personal homes of residents that live on the corridor, provided an opportunity for dialogue—both between residents and with the project team—on the issues to be addressed by the corridor management strategy.
Open Houses

Two three-hour open houses were held in April and June of 2016 at the Water Resource Education Center. The April open house provided a summary of public input heard up to that point and potential design options being considered for the corridor. Approximately 50 participants came to the open house. The June open house provided a summary of the draft strategies and recommendations being developed for the Evergreen Corridor Management Strategy. Approximately 60 participants came to the open house.

For both open houses the information displays were arranged in five stations:

- **INTRODUCTION STATION**—project scope, context, and schedule
- **PAVEMENT MAINTENANCE STATION**—pavement conditions and the City’s near term plans for improvements in the corridor
- **SAFETY IMPROVEMENTS STATION**—traffic analysis results and potential strategies for improving safety for all users
- **PATHWAY DESIGN STATION**—proposed pathway design plans per corridor segment and details related to pathway design treatments and materials
- **HISTORICAL COMMEMORATION AND AMENITIES STATION**—potential locations for historical commemoration and the historical date stamps, benches and furnishings, and other amenities for the corridor

As residents toured the stations, City and consultant team staff were available to discuss the information presented on the displays.
Overview of Corridor Management Objectives

Development of Objectives

As a foundation for future corridor planning and design, several objectives have been identified for the Evergreen Corridor. The objectives were developed through the review of past corridor planning efforts, incorporation of existing comprehensive plan policies, input from the project’s public outreach process, roadway resurfacing option analysis, and a corridor traffic analysis. The objectives will guide the future planning, design, and implementation of corridor improvements and management activities.

Key Messages from the Public Outreach Process

The core public outreach process that occurred from November 2015 to April 2016 led to the formation of several key messages that were used to guide the development of the strategy objectives. The key messages formed around four main points related to the roadway condition, pedestrian pathway, corridor safety, and historical and natural amenities. The messages that resulted from the public outreach process are summarized on the following page. Figure 4 summarizes responses to the Community Survey question about the importance of various improvements.
FIGURE 4: Response to Community Survey Question about Corridor Improvements

ROADWAY SURFACE
- The current condition of the roadway surface is unacceptable and in need of immediate improvement
- A complete reconstruction of existing roadway is not currently financially feasible, so focus on continued maintenance strategies that improve the road conditions and ride quality in the short and long-term
- While the enhanced cape seal treatment is generally better than the condition of unimproved segments of the roadway residents would prefer future efforts to focus on an asphalt overlay approach

PEDESTRIAN PATHWAY
- Completion of the pathway is one of the top priorities for improvements to the corridor
- The drainage rocks used in the newest segment of the pathway are undesirable for people who bike, are difficult to step over, and collect debris

CORRIDOR SAFETY
- Safety for all users—drivers, people walking, and people riding bikes—is a priority for improvements to the corridor
- Driver speeds on Evergreen are too high for the corridor conditions
- The pedestrian pathway is too narrow to accommodate people who bike, and they need to share the road with drivers

HISTORICAL AND NATURAL AMENITIES
- Historic markers are widely supported, especially the reuse of the original highway concrete date stamps
- Benches or other seating options are the most popular amenity, with some residents interested in sponsoring benches
Roadway Conditions

The management of pavement conditions in the Evergreen Corridor is an ongoing challenge for the City of Vancouver given the state of all roadways in the City and the limited funds available for annual repairs and preservation. Vancouver has 1,810 lane miles of streets, and of these, 185 total lane miles are in “failed” condition (about ten percent of the system). The classification of “failed” is based on Pavement Condition Index (PCI) ratings from 0 to 100. PCI ratings for streets in Vancouver are shown in Figure 5. “Failed” PCI ratings are typically:

- < 40 for arterials
- < 35 for residential streets

AVERAGE PCI OF EVERGREEN CORRIDOR

<table>
<thead>
<tr>
<th>Route</th>
<th>PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chelsea to SE 164th Avenue</td>
<td>34 PCI</td>
</tr>
<tr>
<td>SE 164th Avenue to City Limits</td>
<td>46 PCI</td>
</tr>
<tr>
<td>Enhanced Cape Seal Area</td>
<td>83 PCI</td>
</tr>
</tbody>
</table>

(Based on 2015 Ratings)

FIGURE 5: City PCI Map (Winter 2016)
Roadway Surface Treatment Options and Costs

The City evaluated various surface treatment options and their associated life span, cost, and ride quality as part of the project analysis phase. These options are summarized in the table below (Figure 6). The estimated costs of these options are shown in Figure 7.

FIGURE 6: Roadway Treatment Options

<table>
<thead>
<tr>
<th>RECONSTRUCTION</th>
<th>ASPHALT OVERLAY</th>
<th>ENHANCED CAPE SEAL</th>
<th>MILLING OF EXISTING ASPHALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Includes removing existing roadway, replacing substandard culverts, stabilizing poor subgrade, improving stormwater management facilities, and repaving road with asphalt</td>
<td>• 2”- 3” of asphalt over existing roadway</td>
<td>• 3 layer microsurfacing and chip seal treatment</td>
<td>• Removal of old asphalt</td>
</tr>
<tr>
<td>• Cost is significantly higher than all other treatments</td>
<td>• Includes base repairs in problem areas</td>
<td>• Improves ride quality, but will not provide as smooth a surface as an asphalt overlay</td>
<td>• Limited improvement to ride quality without additional work</td>
</tr>
<tr>
<td>• Costs vary widely due to potential stormwater requirements and what is in place at time improvements are made</td>
<td>• Challenges with grade matches at existing side streets and driveways will require some of reconstruction of side streets and driveway approaches</td>
<td>• Cost is higher than milling, and depends on degree of advance work/preparation</td>
<td>• This is the least expensive option.</td>
</tr>
<tr>
<td>• Expected life span is 50+ years</td>
<td>• Cost is higher than milling of existing asphalt or Enhanced Cape Seal treatments but substantially less than full reconstruction</td>
<td>• Expected life span is 5-7 years</td>
<td>• This option has a limited life span, and as such is not a long-term maintenance solution</td>
</tr>
</tbody>
</table>
Corridor Traffic Analysis

As part of the development of the Evergreen Corridor Management Strategy, a traffic study was completed in November 2015 by DKS Associates to provide background information on corridor traffic patterns and speeds. Data collected through the traffic study revealed the following traffic characteristics on the corridor.

Traffic Volumes

Traffic counts on the Evergreen Corridor, including vehicle classifications and speeds, were collected at the following locations:

- West side of SE 101st Avenue
- West side of SE Riverwood Court (in front of Columbia Springs, near I-205 overpass)
- West side of SE 139th Avenue
- West side of SE 147th Avenue

At all four locations, westbound volumes are highest in the AM peak period (5:00 AM to 8:00 AM), and eastbound volumes are highest in the PM peak period (4:00 PM to 6:00 PM). However, the AM peak for westbound traffic is much more significant, particularly at the three locations east of the Ellsworth Road connection to SR 14. Accounting for both directions, these locations feature around 600 vehicles in the AM peak hour compared to around 200 vehicles for the PM peak. Bi-directional daily volumes and peak hour volumes are shown in Figure 8 on the following page.
FIGURE 8: Peak Hour Passenger Vehicle Volumes Compared to 24-Hour Volumes (Both Directions)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>24-HOUR VOLUME</th>
<th>7:00-8:00 AM PEAK HOUR</th>
<th>AM PEAK HOUR % OF DAILY</th>
<th>5:00-6:00 PM PEAK HOUR</th>
<th>PM PEAK HOUR % OF DAILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evergreen Highway/SE 101st Avenue</td>
<td>1,250</td>
<td>231</td>
<td>18.5%</td>
<td>124</td>
<td>9.9%</td>
</tr>
<tr>
<td>Evergreen Highway/SE Riverwood Court</td>
<td>2,373</td>
<td>627</td>
<td>26.4%</td>
<td>224</td>
<td>9.4%</td>
</tr>
<tr>
<td>Evergreen Highway/SE 139th Avenue</td>
<td>2,286</td>
<td>637</td>
<td>27.9%</td>
<td>219</td>
<td>9.6%</td>
</tr>
<tr>
<td>Evergreen Highway/SE 147th Avenue</td>
<td>2,318</td>
<td>598</td>
<td>25.8%</td>
<td>226</td>
<td>9.7%</td>
</tr>
</tbody>
</table>

Source: DKS Associates

FIGURE 9: 24-Hour Passenger Vehicle Volumes Eastbound (EB) and Westbound (WB)
On a typical roadway, traffic volumes will show a fairly even directional split over a 24-hour period, with about 50 percent of vehicles traveling in each direction over the course of a day. Generally, if the AM peak hour is dominated by commute-related volumes in one direction, it is balanced by similar commuting volumes in the PM peak hour in the opposite direction. Traffic volumes observed on SE Evergreen Highway, however, do not reflect the expected balance. See Figure 9, previous page.

TRAFFIC OPERATIONS

Despite the relatively high AM peak hour volumes on SE Evergreen Highway, speed data collected showed that even at the busiest times, vehicles are still traveling near or above the posted speed limit (see Figure 10). This is due to the fact that the corridor is relatively free-flowing—there are no traffic signals and only one 4-way stop-controlled intersection that causes people to have to slow down.

FIGURE 10: 85th Percentile Speeds Compared to Posted Speed Limit

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>POSTED SPEED LIMIT</th>
<th>WESTBOUND 85TH PERCENTILE SPEED</th>
<th>EASTBOUND 85TH PERCENTILE SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evergreen Highway/SE 101st Avenue</td>
<td>35mph</td>
<td>41mph</td>
<td>39mph</td>
</tr>
<tr>
<td>Evergreen Highway/SE Riverwood Court</td>
<td>40mph</td>
<td>45mph</td>
<td>44mph</td>
</tr>
<tr>
<td>Evergreen Highway/SE 139th Avenue</td>
<td>40mph</td>
<td>44mph</td>
<td>42mph</td>
</tr>
<tr>
<td>Evergreen Highway/SE 147th Avenue</td>
<td>40mph</td>
<td>45mph</td>
<td>42mph</td>
</tr>
</tbody>
</table>

Source: DKS Associates
Traffic Safety Assessment

In addition to analyzing traffic volumes, speeds, and patterns, DKS Associates also completed an assessment of traffic safety in the corridor. The corridor has significant topographical, environmental, and right-of-way constraints that make it infeasible to provide separated facilities for each travel mode. Therefore, it is important to minimize potential safety conflicts that would impact vulnerable roadway users such as people walking and biking.

IMPACT OF DRIVER SPEEDS ON PEOPLE WALKING

The current travel speeds near or above 40 MPH on the corridor are incompatible for a residential area to provide a safe, comfortable environment for people walking and biking. This means people crossing or walking close to the roadway are particularly vulnerable to being involved in a collision that results in a severe injury or fatality (Figure 11). High speeds mean drivers need more time and space to stop for pedestrians, and they have less visual awareness of other corridor users.

The American Association of State Highway and Transportation Officials (AASHTO) and Washington State Department of Transportation (WSDOT) guidance on pedestrian pathways along roadways recommends a minimum five-foot buffer between a path and the roadway. This will not be feasible in many locations along SE Evergreen Highway, so managing driver speeds to improve pedestrian visibility and reduce the incidence of severe collisions is especially important.

FIGURE 11: Driver Speeds and Pedestrian Fatality Risk

Source: City of Seattle
In addition to the risk of a severe collision when crossing the road, the speed of adjacent drivers can create a noisy and uncomfortable environment for people walking on an adjacent sidewalk or pathway. This uncomfortable environment may discourage some residents from using the pathway, limiting the benefits of this public investment.

IMPACT OF DRIVER SPEEDS ON PEOPLE RIDING BIKES

Driver speeds create many of the same risks for people biking as for pedestrians, such as poor peripheral vision (Figure 12) and higher crash severities. Due to the topographical, environmental, and right-of-way constraints, the Evergreen corridor will not have striped bike lanes. Instead, most people riding bikes will have to share the travel lanes with motor vehicle drivers.

A shared roadway treatment for bicycles is considered inappropriate on roadways signed for speeds over 35 MPH, due to the conflicts created by speed differentials between drivers and people riding bikes. Best practices, according to the National Association of City Transportation Officials (NACTO), specify that shared lane markings should be limited to situations where the speed differentials are very low, such as low volume streets with a design speed of less than 25 MPH or downhill segments where people riding bikes may travel faster.

THE IMPACT OF SPEED ON TRAFFIC DIVERSION

Existing conditions showed that a significant number of drivers use the Evergreen corridor as a “cut-through” route to avoid traffic congestion on SR 14, especially during the morning peak hour. Lower speeds on the Evergreen corridor may discourage traffic that does not have an origin or destination on the corridor, thus retaining the corridor’s function for neighborhood access rather than through travel.
Primary Objectives for the Evergreen Corridor

Based on past corridor efforts, existing City policies, the project’s public outreach process and the technical analysis completed for the corridor, as summarized above, four primary objectives were identified to guide future planning, design, and implementation of corridor improvements and management activities.

These objectives are:

- **OBJECTIVE 1**—Deliver a well-maintained, smooth roadway
- **OBJECTIVE 2**—Build a continuous, context-sensitive pedestrian pathway
- **OBJECTIVE 3**—Design a corridor that is safe for all users
- **OBJECTIVE 4**—Provide key amenities and celebrate the corridor’s historic and natural significance

Within each of these objectives, several strategies have been identified that will guide future improvements in the corridor. Each objective and their associated strategies will be outlined in the next four Chapters, with the detailed implementation measures summarized in Chapter 8.
Key Strategies

Addressing the roadway condition of SE Evergreen Highway is an important objective of the Evergreen Corridor Management Strategy. Key strategies identified to achieve this objective are listed below, with most of them already completed or in process.

OBJECTIVE 1.0 PROVIDE A WELL-MAINTAINED ROADWAY SURFACE

- **STRATEGY 1.1**—Mill off deteriorated asphalt throughout corridor
- **STRATEGY 1.2**—Complete short-term repairs of highly distressed areas
- **STRATEGY 1.3**—Complete pilot project asphalt overlay from SE Image Road to SE 98th Avenue
- **STRATEGY 1.4**—Restripe centerline and add reflectors throughout corridor
- **STRATEGY 1.5**—Assess conditions of culverts throughout corridor to identify replacement needs
- **STRATEGY 1.6**—Prepare a pavement rehabilitation plan that includes a phased, multi-year resurfacing schedule

THIS CHAPTER ADDRESSES:

- Strategy 1.1 Asphalt Milling
- Strategy 1.2 Short-Term Repairs
- Strategy 1.3 Asphalt Overlay Pilot Project
- Strategy 1.4 Restriping and Reflectors
- Strategy 1.5 Culvert Condition Assessment
- Strategy 1.6 Pavement Rehabilitation Plan
STRATEGY 1.1
ASPHALT MILLING
Remove old asphalt patches that had been put down in the early 2000s to improve roadway ride quality. For several years the asphalt has been unraveling and breaking off, creating a rough roadway surface for traveling on. See Figure 13.

STRATEGY 1.2
SHORT-TERM REPAIRS
In response to damaged areas uncovered by the milling process, the City identified multiple sections from SE 80th Avenue to SE 139th Avenue that require short term asphalt repairs. Depending on the degree of deterioration in each section, the repairs will include either full lane or full roadway width asphalt overlays. See Figure 13.

STRATEGY 1.3
ASPHALT OVERLAY PILOT PROJECT
To help evaluate resurfacing options, the City will perform a pilot project with an asphalt overlay. The pilot project will be located between SE Image Road and SE 98th Avenue and is about 1,500 feet long. The pilot will involve grinding down the existing concrete roadway from the edges to provide an even surface for matching existing driveways once the asphalt overlay is placed down.
FIGURE 13: Strategy 1.2 and 1.3 Locations
STRATEGY 1.4
RESTRIPING AND REFLECTORS

Due to normal maintenance needs, coupled with the milling off of large areas of asphalt, the centerline of Evergreen had become worn and faded. City crews will restripe the centerline through the entire corridor and then add reflective raised pavement markers along multiple stretches of the roadway.

STRATEGY 1.5
CULVERT CONDITION ASSESSMENT

Complete an assessment of existing culverts throughout the corridor to identify replacement needs. This way, culvert replacement can be planned and timed with other roadway work to maximize efficiency and minimize costs. Information obtained through the assessment will include culvert size, structural condition of culverts, and sub-surface conditions.

STRATEGY 1.6
PAVEMENT REHABILITATION PLAN

Prepare a comprehensive pavement rehabilitation plan that will include a phased multi-year resurfacing schedule based on a subgrade and pavement evaluation. The subgrade and pavement evaluation will include roadway core sampling and sub-structure analysis throughout the corridor. This information will then be used to prioritize locations for resurfacing and repair.
Key Strategies

Completing a continuous pathway along the entire length of the Evergreen Corridor was identified through the project public process as residents’ highest priority. Key strategies identified to achieve this objective are listed below, with several of these are already in process.

OBJECTIVE 2.0
BUILD A CONTINUOUS, CONTEXT-SENSITIVE PEDESTRIAN PATHWAY

- STRATEGY 2.1—Pursue funding opportunities to complete pathway construction
- STRATEGY 2.2—Provide a continuous minimum pathway width of 8 feet wide
- STRATEGY 2.3—Provide public input opportunities during future pathway design
- STRATEGY 2.4—Unify corridor pathway system with consistent design elements
- STRATEGY 2.5—Preserve adjacent landscaping and trees wherever feasible
- STRATEGY 2.6—Perform routine maintenance on existing pathway segments

THIS CHAPTER ADDRESSES:

- Strategy 2.1 Pursue Funding Opportunities
- Strategy 2.2 Minimum Pathway Width
- Strategy 2.3 Public Input Opportunities
- Strategy 2.4 Consistent Design Elements
- Strategy 2.5 Preserve Existing Landscaping and Trees
- Strategy 2.6 Perform Routine Maintenance on Existing Pathway Segments
STRATEGY 2.1
PURSUE FUNDING OPPORTUNITIES

The City will continue to identify and pursue a variety of funding opportunities to complete the pathway construction in the Evergreen Corridor. This includes continuing to support private initiatives and the important role they play in pathway completion. Most segments of the pathway have already been designed, or are in early design phases (refer to Figure 14). The community expressed a strong interest in completing logical segments of the pathway to provide continuous access between key intersections and locations.

STRATEGY 2.2
MINIMUM PATHWAY WIDTH

The pedestrian pathway will be designed to have a minimum width of 8 feet and with a desirable width of 10 feet where possible in the corridor. For a pathway to officially be considered a “shared use” facility, for use by people walking and riding bike, federal standards recommend a continuous minimum width of 10 feet. Because this width will not be achievable throughout the entire corridor, the pathway is considered to be primarily a pedestrian facility. Figure 14 shows proposed materials for the pedestrian pathway.

STRATEGY 2.3
PUBLIC INPUT OPPORTUNITIES

The design process for future project segments will be shaped by topographic, environmental, right-of-way, and cost restraints. Thus the pathway segments will require different design solutions to successfully ensure pathway completion. While this strategy has outlined specific design elements to be incorporated into future design phases, residents repeatedly requested the ability to review and provide input during future segment design processes. Public process will ensure the pathway design is compatible with individual property owner needs as well as the overall character of the corridor.

FIGURE 14: Pedestrian Pathway Cross Section Showing Materials
FIGURE 15: Segment Design & Construction Status

Legend

- roads
- Interstate/Highway
- City Boundary
- Parks

Funding Notes*:
Segment A is eligible for Federal grant funds for ROW and CN
Segment B is ineligible for any further Federal grant funds
Segment E would be eligible for Federal grant funds for PE, ROW, and CN
Segment F would be eligible for Federal grant funds for PE, ROW, and CN

*PE - Preliminary Engineering; ROW - Right-of-way; CN - Construction

SEGMENT A
SE Chelsea Ave to SE Image Rd
1.1 miles
UNDER DESIGN
Approximately $1.125 million
needed for construction

SEGMENT B
SE Image Rd to SE 100th Ct
0.4 miles
DESIGN 75% COMPLETE
PERMITS COMPLETE
Approximately $750,000
need for construction

SEGMENT C
SE 100th Ct to Ellsworth Rd
0.4 miles
COMPLETED 2015

SEGMENT D
Ellsworth Rd to Columbia Springs
0.7 miles
COMPLETED 2001

SEGMENT E
Columbia Springs to SE 164th Ave
2.3 miles
PRELIMINARY DESIGN COMPLETED
Privately financed and coordinated

SEGMENT F
SE 164th Ave to City limits
1.8 miles
CONCEPTUAL DESIGN COMPLETED
STRATEGY 2.4
CONSISTENT DESIGN ELEMENTS

The design of the pathway corridor should include consistent design elements that reflect the character and history of the area. The continuous use of the same elements throughout the corridor will create a cohesive look, enhancing the identity of the pathway system and blending it into the neighborhood setting. As pathway segments are designed, the following elements will be utilized unless circumstances due to topographical, right-of-way, or other constraints are present:

- Black, powder-coated steel railing (similar to the pathway segment completed in 2001)
- Split-face eco-block walls when support is needed for a structure or will not be visible from the roadway
- Pervious concrete drainage strip (sits between the edge of roadway and pathway)
- Natural rock design block wall for retaining walls in visible areas

Other elements that may be included along the corridor, such as benches, lighting, trash receptacles, and other amenities are discussed in Chapter 7 of this strategy.
STRATEGY 2.5
PRESERVE EXISTING LANDSCAPING AND TREES

Existing mature trees and vegetation create the “Evergreen” character of the corridor and should be preserved wherever possible with the design and construction of pathway and roadway improvements. In some areas, the pathway material may need to change from permeable concrete to unit pavers to fit the pathway around mature trees and vegetation (as was done in the segment from SE Ellsworth Road to SE 100th Court).

STRATEGY 2.6
PERFORM ROUTINE MAINTENANCE

For segments of the pedestrian pathway that have already been completed, routine maintenance to clear away the buildup of moss, leaves, and other debris is important to ensure safe access for residents in the corridor. Also, with design elements such as permeable pavers and pervious concrete, routine maintenance will be necessary to make sure they can successfully meet stormwater filtration needs.

Pathway Map and Cross Sections

The map on this page and the next page shows the status and location of pathway improvements. The illustrations that follow show proposed design cross sections for the corridor, including the proposed pathway locations.
FIGURE 16: Pathway Map and Cross Sections
Chapter 5 Build a Continuous, Context-Sensitive Pedestrian Pathway

SEGMENT A: CROSS SECTION A1
SE 75TH CT. - SE MORGAN RD.

SEGMENT A: CROSS SECTION A2
SE 83RD CT. - SE 84TH RD.

LEGEND

- Existing Grade
- Proposed Construction
- Existing Vegetation
SEGMENT B: CROSS SECTION B1

SE IMAGE RD. - SE 94TH CT.

LEGEND

SEGMENT B: CROSS SECTION B2

SE 97TH CT. - SE 98TH RD.

LEGEND
SEGMENT C: CROSS SECTION C1

status: **COMPLETED 2015**

SE 101ST AVE. - SE 102ND CT.

SEGMENT C: CROSS SECTION C2

status: **COMPLETED 2015**

SE 105TH CT. - SE 106TH AVE.
SEGMENT D: CROSS SECTION D1

SE ELLSWORTH RD. - SE 112TH AVE.

status: COMPLETED 2001

SEGMENT D: CROSS SECTION D2

SE 115TH CT. - I-205

status: COMPLETED 2001
SEGMENT E: CROSS SECTION E1 status: PRELIMINARY DESIGN COMPLETED

MIMSI MARSH

SEGMENT E: CROSS SECTION E2 status: PRELIMINARY DESIGN COMPLETED

SE 148TH AVE. INTERSECTION
SEGMENT F: CROSS SECTION F1
status: CONCEPTUAL DESIGN COMPLETE
SE 166TH PL. - SE 169TH CT.

SEGMENT F: CROSS SECTION F2
status: CONCEPTUAL DESIGN COMPLETE
NORTH OF COLUMBIA VISTA MILL
Design a Corridor that is Safe for All Users

Key Strategies

The City of Vancouver envisions a future Evergreen Corridor that is safe for people walking and biking, as well as drivers. Recommended safety enhancements such as speed management tools and methods for creating safer conditions for all modes are provided in this chapter of the Evergreen Corridor Management Strategy. For additional background related to the traffic and safety assessment completed for the Evergreen Corridor, refer to Chapter 3.

OBJECTIVE 3.0
DESIGN A CORRIDOR THAT IS SAFE FOR ALL USERS

- **STRATEGY 3.1**—Use lighting in focused areas to improve pedestrian safety
- **STRATEGY 3.2**—Reduce speed limits to levels that are safer for all users
- **STRATEGY 3.3**—Implement a package of speed management tools
- **STRATEGY 3.4**—Monitor speeds and assess safety one year after implementation

This chapter addresses:

- Strategy 3.1 Lighting in Focused Areas
- Strategy 3.2 Speed Limit Reduction
- Strategy 3.3 Speed Management
- Strategy 3.4 Speed Monitoring
STRATEGY 3.1
LIGHTING IN FOCUSED AREAS

Lighting will be focused at key intersections and pedestrian crossings to enhance safety. The City is proposing to install energy-efficient, light emitting diode (LED) street lights at these locations. The light fixture will cast light down toward the pavement surface, at the intersection and where pedestrians are crossing, avoiding light pollution to the sides of the corridor. A cobra head style light fixture will be the primary lighting design; however, the City may determine that other lighting styles are appropriate on a project-by-project basis.

STRATEGY 3.2
SPEED LIMIT REDUCTION

To achieve the objective of an Evergreen corridor that is safe for people walking and riding bikes while still preserving motor vehicle access for local residents, speed limits will be reduced in a phased approach. The recommended speed limits for the corridor are shown in Figure 17. Lower speeds are recommended in the segment west of Ellsworth Road due to the increase of potential conflict points for all corridor users—the lower feasibility of separating pedestrians from the roadway and higher frequency of intersections and access points.
For the segment between SE Chelsea Avenue and SE Ellsworth Road, travel time at 25 MPH would be 4.8 minutes, compared to 3.4 minutes today. For the segment between SE Ellsworth Road and SE 164th Avenue, travel time would be 6 minutes, compared to 4.5 minutes today.

FIGURE 17: Speed Limit Recommendations

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>EXISTING SPEED LIMIT</th>
<th>RECOMMENDED SPEED LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evergreen Corridor west of Ellsworth Road</td>
<td>35 mph</td>
<td>25 mph</td>
</tr>
<tr>
<td>Evergreen Corridor east of Ellsworth Road</td>
<td>40 mph</td>
<td>30 mph</td>
</tr>
</tbody>
</table>

STRATEGY 3.3 SPEED MANAGEMENT

Research has shown that changing the speed limit is not enough to create safe and comfortable conditions for all road users. Additional countermeasures and design changes are needed to properly manage speed. Increased speed enforcement is often raised as an effective measure for increasing driver compliance. Enforcement by unmanned photo radar camera is not legal on SE Evergreen Highway. Ongoing enforcement by patrol is not a financially sustainable option, and has been shown to be limited in affecting long-term behavior.
The potential speed management tools described below are aimed at improving driver compliance with the recommended speed limit reductions:

- **RADAR SPEED FEEDBACK SIGNS**: may be most appropriate at locations where vehicles enter the corridor or where there are changes in the posted speed limit. Signs may be either temporary or permanent.

- **SMALL TRAFFIC CIRCLES**: placed at locations where there are intersecting roadways and there is available right-of-way. Traffic Circles should be carefully planned as not to impair the visibility of people crossing the roadway.

- **RAISED PEDESTRIAN CROSSINGS**: make people crossing the roadway more visible to drivers while also reducing speeds. Raised crossings will be utilized at locations where the pedestrian pathway crosses the roadway and at high crossing locations from residential areas to the pathway.
• **ENHANCED PEDESTRIAN CROSSINGS:** improve the visibility of people walking and increase driver awareness of the need for safe speeds. An enhanced pedestrian crossing can include ladder crosswalks, refuge islands, or Rectangular Rapid Flashing Beacons (RRFB).

• **PAVEMENT MARKINGS:** show the posted speed limit on the roadway and can effectively alert drivers to slow down and help identify transitions in the corridor where the speed limit may change.

• **SHARED LANE MARKINGS (SHARROWS):** can be used to indicate that travel lanes are to be shared by people driving and people riding bikes. Sharrows typically indicate a shared lane situation where the speed differential between a driver and a person biking is low. See the image on the previous page for an example.
STRATEGY 3.4
SPEED MONITORING

As a one year follow-up to the implementation of the initial speed management tools, the City will conduct a speed study to determine if they are effective in reducing driver speeds. The threshold for the City’s Traffic Calming Program for arterial streets will then be used to determine if further speed management strategies are needed. Additional strategies would be targeted to areas where the separation between pedestrian pathway and roadway is five feet or less. Potential tools could include additional raised crosswalks or speed cushions.
Key Strategies

Along with pedestrian pathway improvements, there is an opportunity to provide key amenities and to celebrate the prominent history and natural features of the Evergreen Corridor. Key strategies identified to achieve this objective are listed below. Refer to Chapter 5—Build a Continuous, Context-Sensitive Pedestrian Pathway for other strategies and recommendations for the pathway corridor and design treatments.

OBJECTIVE 4.0
PROVIDE KEY AMENITIES AND CELEBRATE THE CORRIDOR’S HISTORIC & NATURAL IMPORTANCE

- **STRATEGY 4.1**—Repurpose historic concrete date stamps within the pedestrian pathway
- **STRATEGY 4.2**—Pursue opportunities to install benches along the pathway
- **STRATEGY 4.3**—Construct pedestrian overlook points in select locations
- **STRATEGY 4.4**—Commemorate sites of historic and natural importance with markers and/or interpretive panels
- **STRATEGY 4.5**—Install gateway signs to reinforce the historic character of the corridor

THIS CHAPTER ADDRESSES:
- Strategy 4.1 Historic Concrete Date Stamps
- Strategy 4.2 Benches and Furnishings
- Strategy 4.3 Pedestrian Overlooks Points
- Strategy 4.4 Commemoration of Historic and Natural Sites
- Strategy 4.5 Gateway Corridor Signs
FIGURE 18: Pathway Corridor Concept/Potential Date Stamp Locations

STRATEGY 4.1
HISTORIC CONCRETE DATE STAMPS

Options for preserving concrete date stamps will focus on incorporating them into future pathway corridor designs. This could include embedding them in the pathway, locating them to the side of the pathway, or placing them within retaining walls and/or at overlook points. Refer to Figure 18 for an illustration of how date stamps can be incorporated into the design of the pathway corridor.
STRATEGY 4.2
BENCHES AND FURNISHINGS

Benches could be located along the pathway at key locations, such as overlook points and other pausing and resting points (such as near pedestrian crossings). Benches may also be located near special features of the corridor (historic and natural areas, etc.). Trash and recycling receptacles may be located adjacent to some benches along the corridor. The City’s waterfront standard will be used for benches and trash receptacles.

STRATEGY 4.3
PEDESTRIAN OVERLOOKS POINTS

Pedestrian overlook points would be designed to provide space for pedestrians to stand or sit off the main pathway along the corridor. Overlooks would be located at key points of interests, such as at historic sites or natural features. They will be designed to avoid impacts to these historic and natural areas, while at the same time providing education and outreach about their importance to the public. Refer to Figure 19 below for an example design of an overlook.

FIGURE 19: Overlooks Points Concept – Plan View

City bench and trash receptacle
**STRATEGY 4.4
COMMEMORATION OF HISTORIC AND NATURAL SITES**

Historic and natural themes can be commemorated through markers and interpretive panels installed along the corridor with each segment of pathway improvements. Existing aging historic markers and displays could be replaced by a system of new features, or repurposed into new structures. Additionally, stream crossings and other natural features could continue to be marked with special signs along the corridor (as exist in some locations today—the Columbia Springs Watershed signs, for example). Potential locations of historic markers are shown in Figure 20.

**STRATEGY 4.5
CORRIDOR GATEWAY SIGNS**

More prominent corridor gateway signs could be installed at entry points to different segments of the corridor. Corridor gateway signs can also bring the added benefit of traffic calming. Motorists see the signs and are alerted to the unique setting, which can prompt them to slow down and use more caution. Examples are shown below.
These particular locations were described in the Existing Conditions report for the Evergreen Corridor because each is either a historical site or part of the ‘Legacy Lands’ system. The City of Vancouver recognizes historic buildings and properties as cornerstones to a community’s heritage and culture. The City also recognizes Legacy Lands as vital parts of larger greenways and habitat corridors.
Implementation

Introduction

This chapter provides information to support implementation of the objectives and strategies presented in earlier chapters. Specific timelines are provided for those strategies occurring in the short term and implementation details are provided for strategies occurring in the longer term. In response to the initial public feedback given during the project outreach process, several strategies were identified for implementation as early as this summer of 2016 and prior to completion of the Evergreen Corridor Management Strategy.

At the time of the completion of this strategy, the development of a Pavement Rehabilitation Plan is currently underway. The Rehabilitation Plan will provide a long term implementation strategy for roadway resurfacing improvements in the corridor. Using the technical, construction, and cost information gained from the 2016 asphalt overly pilot project and coring and subsurface analysis, the plan will identify surface treatment options to be phased over the next 5-6 years. Knowing that the Rehabilitation Plan will provide more specific roadway resurfacing implementation measures, this Strategy focused on short term action items related to the roadway surface condition.

THIS CHAPTER ADDRESSES:

- Introduction
- Title 11 Code Changes
- Implementation of Objectives
- Funding Options
Title 11 Code Changes

To ensure the objectives and strategies identified in this document are followed and incorporated into future Evergreen Corridor improvements, the City shall amend the Vancouver Municipal Code (VMC) Title 11 Streets and Sidewalks in conjunction with the corridor strategy adoption. The Title 11 amendment will include language that allows for policy and strategy documents like the Evergreen Corridor Management Strategy to provide specific standards unique to an area that are different from the City’s general street standards and specifications and that will apply to both public and private projects.

Implementation of Objectives

Each of the Evergreen Corridor management objectives will be implemented by the following described strategies.

OBJECTIVE 1.0
DELIVER A WELL-MAINTAINED, SMOOTH ROADWAY

Phasing of ongoing roadway improvements including resurfacing and culvert replacement will be based on the outcomes of the Pavement Rehabilitation Plan strategy. The analysis completed as a part of the Plan will determine those segments of the corridor that are most in need of improvements and the level of improvements that will be necessary.

STRATEGY 1.1—MILL OFF DETERIORATED ASPHALT THROUGHOUT CORRIDOR

Mill asphalt to provide a better understanding of underlying roadway deterioration as well as providing a prepared surface for future work by Spring of 2016

STRATEGY 1.2—COMPLETE SHORT-TERM REPAIRS OF HIGHLY DISTRESSED AREAS

Repair identified highly distressed areas in the vicinity of Columbia Springs and west of 88th Avenue by August of 2016

STRATEGY 1.3—COMPLETE PILOT PROJECT ASPHALT OVERLAY FROM SE IMAGE ROAD TO SE 98TH AVENUE

Complete test area of grinding down the existing concrete and applying asphalt layers completed by August 2016

STRATEGY 1.4—RESTRIPE CENTERLINE AND ADD REFLECTORS THROUGHOUT CORRIDOR

Add centerline to the entire corridor and add reflective raised pavement markers in key segments of the corridor by October 2016

• STRATEGY 1.5—ASSESS CONDITIONS OF CULVERTS THROUGHOUT CORRIDOR TO IDENTIFY REPLACEMENT NEEDS

Complete a partial assessment by the end of 2016 and incorporate information into the Pavement Rehabilitation Plan

• STRATEGY 1.6—PREPARE A PAVEMENT REHABILITATION PLAN FOR THE CORRIDOR

Complete a Pavement Rehabilitation Plan by the end of 2016 that will include a phased, multi-year schedule for resurfacing the entire corridor over the next 5-6 years

✓ = COMPLETED
OBJECTIVE 2.0
BUILD A CONTINUOUS, CONTEXT-SENSITIVE PEDESTRIAN PATHWAY

Phasing of future pedestrian pathway improvements will be determined as design progresses for the various segments of the corridor. Grant funding will be pursued and some segments of the corridor may show greater applicability to various grant application criteria (such as a greater need for safety improvements based on existing conditions). The focus will be on completing those segments the City currently has under design and filling in gaps or extending existing segments.

• STRATEGY 2.1—PURSUE FUNDING OPPORTUNITIES TO COMPLETE PATHWAY CONSTRUCTION
 Complete construction of the segments from SE Chelsea Avenue to SE Image Road and SE Image Road to SE 100th Court
 Complete remaining design, right-of-way, and permitting process for the segment from Columbia Springs to SE 164th Avenue and construct project
 Update design work and cost estimate for the segment from SE 164th Avenue east to the City limits and construct project

• STRATEGY 2.2—PROVIDE A CONTINUOUS MINIMUM PATHWAY WIDTH OF 8 FEET WIDE
 To the extent feasible given corridor constraints (right-of-way, topography, trees and vegetation) design future segments of the pedestrian pathway to be 8 feet wide

• STRATEGY 2.3—PROVIDE PUBLIC INPUT OPPORTUNITIES DURING FUTURE PATHWAY DESIGN
 Ensure all future pedestrian pathway design projects include public outreach and opportunities for community input

• STRATEGY 2.4—UNIFY CORRIDOR PATHWAY SYSTEM WITH CONSISTENT DESIGN ELEMENTS
 Incorporate identified design elements in all future pedestrian pathway projects unless project constraints require design changes
 If design changes are required provide opportunities for public input regarding the needed design changes

• STRATEGY 2.5—PRESERVE ADJACENT LANDSCAPING AND TREES WHEREVER FEASIBLE
 Design future segments of the pedestrian pathway to minimize impacts to existing landscaping and trees within corridor constraints (right-of-way, topography, trees and vegetation)

• STRATEGY 2.6 — PERFORM ROUTINE MAINTENANCE ON EXISTING PATHWAY SEGMENTS
 Provide annual maintenance on corridor pedestrian pathway segments
OBJECTIVE 3.0
DESIGN A CORRIDOR THAT IS SAFE FOR ALL USERS

Safety improvements, such as speed management tools and speed limit reductions will be phased in with roadway resurfacing projects. Improvements to pedestrian crossings could occur during roadway resurfacing or pedestrian pathway projects. A public outreach process will be included for each project phase under this section.

- STRATEGY 3.1—USE LIGHTING IN FOCUSED AREAS TO IMPROVE PEDESTRIAN SAFETY
 Add street lighting to pedestrian pathway crossings or locations that provide key access points to the pedestrian pathway from adjoining streets

- STRATEGY 3.2—REDUCE SPEED LIMITS TO LEVELS THAT ARE SAFER FOR ALL USERS
 Reduce speed limit to 25 MPH in conjunction with resurfacing of roadway from SE Chelsea Avenue to SE Ellsworth Road
 Reduce speed limit to 30 MPH in conjunction with resurfacing of roadway from SE Ellsworth Road to City limits

- STRATEGY 3.3—IMPLEMENT A PACKAGE OF SPEED MANAGEMENT TOOLS
 Implement a package of recommended speed management tools in conjunction with corridor speed limit reductions

- STRATEGY 3.4—MONITOR SPEEDS AND ASSESS SAFETY ONE YEAR AFTER IMPLEMENTATION
 Complete a traffic study one year after each set of speed limit reductions and speed management packages are implemented
 If driver speeds are above the City’s Traffic Calming Program arterial roadway threshold, implement additional recommended speed management tools to further reduce driver speeds
 With the implementation of additional speed management tools and when driver speed reductions are obtained, remove the permanent speed advisory zone signs that currently exist at SE Bella Vista Place and SE 148th Avenue
OBJECTIVE 4.0

PROVIDE KEY AMENITIES AND CELEBRATE THE CORRIDOR’S HISTORIC AND NATURAL IMPORTANCE

Incorporation of concrete date stamps, benches, and pedestrian overlooks will be included in the pedestrian pathway design process. Phasing of the other strategies that address the corridor’s historic or natural character will likely occur as opportunities arise through grant opportunities or private donations.

- STRATEGY 4.1—REPURPOSE HISTORIC CONCRETE DATE STAMPS WITHIN THE PEDESTRIAN PATHWAY
 Date stamps will be removed through sawcutting from locations of the roadway as it is resurfaced and then incorporated into the future pedestrian pathway projects

- STRATEGY 4.2—PURSUE OPPORTUNITIES TO INSTALL BENCHES ALONG THE PATHWAY
 Establish donation program for residents that would provide for the installation of benches along the corridor
 During pathway design process identify potential locations for future bench installations

- STRATEGY 4.3—CONSTRUCT PEDESTRIAN OVERLOOK POINTS IN SELECT LOCATIONS
 Look at opportunities to include overlook points where space in the public right-of-way exists to accommodate a widened area along the pathway (or on adjacent public property or via an easement granted by willing adjacent property owners)

- STRATEGY 4.4—COMMEMORATE SITES OF HISTORIC AND NATURAL IMPORTANCE WITH MARKERS AND/OR INTERPRETIVE PANELS
 As opportunities allow, replace aging historical markers and add new panels, signs, or kiosks to identify historical or natural themes in the corridor

- STRATEGY 4.5—INSTALL GATEWAY SIGNS TO REINFORCE THE NEIGHBORHOOD AND HISTORIC CHARACTER OF THE CORRIDOR
 As opportunities allow, add Evergreen corridor gateway signs at key entry points
 Preserve existing neighborhood association signs provided through the City’s Office of Neighborhoods

Mimsi Marsh
Funding Options

In addition to funding cyclical improvements and maintenance of the roadway through the pavement management program, the City will pursue a variety of funding options for implementation of this strategy. In particular, various federal grant programs will be pursued for segments of pathway improvements. Potential funding opportunities are listed in the table below. Other funding sources not listed but that could be explored include Washington State Department of Ecology grants for stormwater management and integration of low impact development in projects.

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
<th>FUNDING AGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGHWAY SAFETY IMPROVEMENT PROGRAM (HSIP) FUNDING</td>
<td>Provides funding to implement engineering countermeasures to reduce fatal and serious injury collisions</td>
<td>FHWA</td>
</tr>
<tr>
<td>TRANSPORTATION ALTERNATIVES PROGRAM (TAP)</td>
<td>Provides funding for programs and projects defined as transportation alternatives, including on- and off-road pedestrian and bicycle facilities, infrastructure projects for improving non-driver access to public transportation and improved mobility, community improvement activities and environmental remediation; recreational trail program projects; and safe routes to school projects</td>
<td>FHWA</td>
</tr>
<tr>
<td>SURFACE TRANSPORTATION PROGRAM (STP)</td>
<td>Projects eligible for STP funding include highway and bridge construction and repair; transit capital projects; bicycle, pedestrian, and recreational trails; and construction of ferryboats and terminals</td>
<td>FHWA</td>
</tr>
<tr>
<td>CONGESTION MITIGATION AND AIR QUALITY IMPROVEMENT PROGRAM (CMAQ)</td>
<td>Funds projects and programs that help meet the requirements of the Clean Air Act</td>
<td>FHWA</td>
</tr>
<tr>
<td>PEDESTRIAN AND BICYCLE SAFETY PROGRAM</td>
<td>Funds projects that improve the transportation system to enhance safety and mobility for people who choose to walk or bike</td>
<td>WSDOT</td>
</tr>
<tr>
<td>COMPLETE STREETS PROGRAM</td>
<td>Funds projects that use context sensitive solutions to accommodate all users, including pedestrians, transit users, cyclists, and motorists</td>
<td>TIB</td>
</tr>
<tr>
<td>NEIGHBORHOOD TRAFFIC CALMING PROGRAM</td>
<td>Provides funding for local projects that help to slow neighborhood traffic and increase pedestrian safety</td>
<td>COV</td>
</tr>
<tr>
<td>SAFETY, ACCESSIBILITY, AND MOBILITY PROGRAM</td>
<td>Provides funding for projects that improve safety, accessibility, and mobility for people walking or riding bikes</td>
<td>COV</td>
</tr>
</tbody>
</table>